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Abstract  

The vibration signal is one of the most essential diagnostic signals, the analysis of which allows for 

determining the dynamic state of the monitored machine set. In the era of cyber-physical industrial systems, 

making diagnostic decisions involves the study of large databases from previous registers and data downloaded 

from machines in real-time. However, the recorded signals mainly concern the operational status of the 

monitored object. Insufficient training data regarding failure states hinders the operation of classification 

algorithms. Progress in machine learning has created a new avenue for the advancement of diagnostic methods 

based on models. These methods now have the capability to produce signals through random sampling from a 

hidden space or generate fresh instances of input data from noise. The article suggests the use of a Generative 

Adversarial Network (GAN) model as a tool to create synthetic measurement observations for vibration 

monitoring. The effectiveness of the synthetic data generation algorithm was verified on the example of the 

vibration signal recorded during tests of the drive system of a motor vehicle. 
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AGI – Artificial Generative Intelligence; 

D(z) – Discriminator network; 

GAN – Generative Adversarial Network;  

G(z) – Generator network; 

STFT – Short Time Fourier Transform; 

VAE – Variational Autoencoders 

 

1. INTRODUCTION AND RELATED WORKS 

 

In the era of cyber-physical industrial systems, 

making diagnostic decisions involves the analysis of 

large databases from previous registers and data 

downloaded from machines in real time. However, 

the recorded signals mainly concern the operational 

status of the monitored object. The inadequate 

amount of training data related to instances of system 

failures poses a challenge to the effective 

functioning of classification algorithms. One step 

towards improving the effectiveness of automatic 

anomaly detection systems is to understand the 

distribution of available data, leading to synthetic 

data generation [19]. 

Synthetic data was treated as a supplement to 

expensive, uncertain, real data limited by available 

technologies or regulations. Their potential is 

growing in advanced machine learning algorithms; 

they constitute almost half of the training data, and 

analytical and research companies predict that by 
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2030, they will be the basic data component for 

models of artificial generative intelligence (AGI). 

Augmenting available data increases the 

applicability and accuracy of machine learning 

models and creates conditions for introducing 

artificial intelligence when data for random 

scenarios is lacking. Synthetic data is used by the 

automotive, machinery, electronics, pharmaceutical, 

energy, construction engineering, health care and 

other industries. The article in reference [17] 

provides an overview of publications from 2014 

onwards, delving into the applications of generative 

models across diverse domains. It also conducts an 

analysis of the utilization of deep generative 

machine learning in the realm of engineering design. 

Applications involving AGI applications are 

widely present in media content (images, texts, audio 

and video) and the design of parts, materials and 

medicines [1, 2, 13]. A technique for generating 

synthetic time series of smart home data based on 

latent variable generative models was proposed in 

[16]. Generating artificial voltage collapse in the 

complex power grid is the subject of research 

presented in [8]. The article referenced as [9] 

introduces an examination of feature learning for 

fault detection in industrial processes, focusing on 

the application of adversarial autoencoder 

techniques. The study specifically utilizes the 

Tennessee Eastman benchmark process as a case 
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study. A first attempt at applying GANs to 

unsupervised synthesis of raw-waveform audio was 

introduced in [4]. Improved version of GAN for 

synthesising percussive sounds can be found in [15]. 

The traditional discriminative model, 

constructed by considering average values of 

individual features within the given dataset, lacks the 

capability to augment the samples within the training 

set. The challenge associated with deep machine 

learning is the construction and application of 

generative models that enable making complex 

decisions based on synthetic data regarding 

situations that have never been recorded by the 

system before. Generative models are multi-layer 

neural networks that approximate multidimensional 

probability distributions containing a random 

element. While the discriminative model focuses on 

understanding the conditional probability 

distribution of the target variable given known 

feature values, the essence of generative modelling 

lies in understanding the joint distribution of input 

data and the capacity to forecast new observations 

that could be integrated into the initial training set 

[14, 19]. 

Deep neural network algorithms enable synthetic 

data generation by randomly sampling from a latent 

subspace. The most popular models that have been 

used in industrial solutions are Variational 

Autoencoders VAE [10,11,12] and Generative 

Adversarial Networks GAN [7]. Each of these 

models consists of two deep neural networks. The 

Variational Autoencoder (VAE) serves as an 

encoder, compressing the input observation space 

and transforming it into a multidimensional normal 

distribution represented by two vectors: the mean 

value (μ) and standard deviation (σ). Additionally, it 

functions as a decoder, generating synthetic data by 

using samples derived from the latent subspace. The 

role of the decoder in the GAN model is played by a 

generator network that samples and processes a 

vector from random noise into new examples of 

input data. The multidimensional Gaussian 

distribution is compared with real data by a 

discriminator, which is a binary classifier. Within the 

Variational Autoencoder (VAE), the latent vector is 

produced through the encoding process, whereas in 

the Generative Adversarial Network (GAN), the 

latent vector is derived from random noise. To 

parameterize the encoder, decoder, generator, and 

discriminator, deep neural networks are employed in 

both VAE and GAN. 

 

Fig. 1. Structure of VAE and GAN models 

 

The paper suggests utilizing a Generative 

Adversarial Network (GAN) model as a means of 

creating synthetic measurement observations to 

assess the dynamic state of a monitored drive system 

in a motor vehicle. The article raises the problem of 

training neural networks fed with data from the 

analysis of vibration signals. The obtained synthetic 

observations were verified for their use in 

supplementing databases representative of 

emergency states. The efficacy of the proposed 

algorithm was verified through experiments 

conducted on both simulated and real-world data. 

 
2. MATERIAL AND METHODS  

 
2.1. Model of generative adversarial networks 

Generative adversarial networks GANs proposed 

in [5,6,18] have become a significant tool in machine 

learning. GANs, unlike other generative models, do 

not estimate the probability density explicitly, 

require a latent spatial variable z and define a 

stochastic model that can directly generate different 

data distributions. White noise is the primary 

observation space of the generator. The generator 

network 𝐺(𝑧): 𝛧 →  𝛸 is opposed to the adversary, 

which is the discriminator network used to determine 

whether the sample comes from the model 

distribution or the data distribution. The 

discriminator 𝐷(𝑥): 𝑋 →< 0,1 > is trained to 

recognize fake data until it can distinguish it from 

real data. The sigmoid activation function ensures 

that the output signal is scaled to the range < 0; 1 >. 

 

Fig. 2. Simplified diagram of the GAN model 

 

Training is a zero-sum game. Equilibrium occurs 

when the generator has mastered producing perfect 

synthetic data, and the discriminator always 

indicates that the output is true or false with equal 

probability. During training, the discriminator 

analyses: 

• 𝑥 − real data, i.e. 𝑥~𝑝𝑟𝑒𝑎𝑙(𝑥) 

• 𝑥′ − synthetic data of the generator, i.e. 

𝑥′~𝑝𝑔𝑒𝑛(𝑧) 

During the training phase, the discriminator 

employs data loss functions to quantify the 

dissimilarity between the distribution of data 

produced by the Generative Adversarial Network 

(GAN) and the distribution of real data. The loss 

function 𝐻(𝑥) is a combination of two components: 

the loss of the generator fooling the discriminator 

and the loss of the discriminator classifying true and 
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false data. Given that the discriminator functions as 

a binary classification model, we employ a binary 

cross-entropy loss function: 

𝐻(𝑥) = 𝔼𝑥~𝑝𝑟𝑒𝑎𝑙
[log2𝐷(𝑥)] + 

+𝔼𝑧~𝑝𝑔𝑒𝑛
[log2(1 − 𝐷(𝐺(𝑧))] (1) 

The process has double feedback: discriminator - 

actual observations and discriminator - generator. To 

minimize the loss function, the discriminator 

parameters are updated using backpropagation. The 

loss function is based on the GAN output states, 

which may result in the discriminator achieving 

convergence faster than the generator and problems 

with stable training. Both networks are trained 

alternately. During joint training, the discriminator 

weights should be locked to update only the 

generator weights.  Once the GAN converges, the 

generator can create synthetic data. The GAN 

training algorithm includes the following: 

I. Random noise sampling. 

II. Generating synthetic data. 

III. Transferring data to the discriminator. 

IV. Calculation of binary classification loss. 

V. Backpropagation by discriminator and 

generator. 

VI. Model parameterization. 

Several iterations of Generative Adversarial 

Networks (GANs) have been created, such as 

DCGAN, SRGAN, VAE-GAN, WGAN, cycleGAN, 

and styleGAN, each featuring distinct adjustments 

and applications [3].  

  

2.2. Experimental setup 

The effectiveness of the synthetic data generation 

algorithm was verified on the example of the 

vibration signal recorded during tests of the 

combustion engine. 

Tests were conducted on the four-cylinder spark 

ignition engine of a Fiat Punto 1.4 with a mileage of 

400,000 km during road tests. The examination 

involved measuring engine vibrations at different 

speeds and loads. Piezoelectric vibration sensors 

(B&K Delta Shear type 4393) with a frequency 

range of 0.1 – 16500 Hz were used, and they were 

attached to the engine side at cylinder 1. The 

measurements were taken using a portable data 

recording device (B&K PULSE type 3560E). Engine 

block vibrations were recorded vertically and 

horizontally at a frequency of 65536 Hz. To ensure 

accurate results, the recorded signals underwent 

preprocessing, which included applying an anti-

aliasing filter to prevent amplification of 

components within the natural frequency range of 

the vibration sensor. 

Generating vibrations and noise in internal 

combustion engines is a complicated process. The 

vibrations result from a mix of periodic waves linked 

to rotating components and reactions to sudden 

forces associated with the linear and rotary 

movements of pistons, as well as excitations induced 

by the pressure of gas against cylinder walls. Intense 

and momentary shifts in the vibroacoustic signal 

arise from the functioning of components like inlet 

and exhaust valves, injectors, the combustion 

process, and the interaction between pistons and 

cylinder linings. 

Certain excitations in the engine are regular and 

repetitive, such as the strokes of the piston against 

the cylinder lining and the opening and closing of 

valves (in engines with consistent valve timing). On 

the other hand, there are excitations that vary with 

angles, such as during injection and ignition 

processes. Consequently, when conducting vibration 

measurements, it is crucial to capture supplementary 

informative signals that synchronize with the 

engine's operation, like the position of the 

crankshaft. 

An example of the engine vibration acceleration 

signal as a function of the crankshaft rotation angle 

is shown in Fig.3. 

 

Fig. 3. Example time waveform of engine 

vibration acceleration for one engine 

operation cycle at a shaft rotation speed of 

2000 rpm 

  

Since the operation of each cylinder causes a 

different vibration response of the system, each 

operation cycle has been divided into four parts 

corresponding to the operation of individual 

cylinders. The synchronized and superimposed 

vibration responses for individual cylinders are 

shown in Fig.4. 

 

Fig. 4. Time waveforms of the vibration 

response for each cylinder during 10 engine 

operation cycles 

  

The vibration responses for each cylinder were 

subjected to the Short-Time Fourier Transform 



DIAGNOSTYKA, Vol. 24, No. 4 (2023)  

Puchalski A, Komorska I: Applications of generative models with a latent observation subspace in … 

 

4 

STFT and as 128x128 matrices constituted the input 

database for training the GAN network, consisting of 

5920 samples. A visualization of an example sample 

for each cylinder is shown in Fig.5. 

 

Fig. 5. Time-frequency spectra of the 

vibration response of each cylinder for an 

example engine operation cycle 

  

The training data underwent normalization to 

achieve a zero mean and a standard deviation of one. 

Subsequently, the mean Short-Time Fourier 

Transform (STFT) and standard deviation were 

computed for each frequency bin. 

  
2.3. Structure of GAN 

Data in the form of 128 x 128 arrays, visualised 

as STFT spectrum, were fed into a GAN with 5 

hidden layers.  

The generator takes a 1x100 vector as input, 

sampled from a normal distribution, and produces an 

image with dimensions identical to those in the 

original training dataset (128x128). Within the 

Generative Adversarial Network (GAN), the 

generator transforms the vector within the latent 

space into a Short-Time Fourier Transform (STFT) 

image. The specific architecture of the generator is 

detailed in Table 1. 

  
Table 1. GAN generator architecture 

Operation Output shape 

Input z 1 x 1 x 100 

Dense (Fully connected) 16384 x 1 

Reshape 4 x 4 x 1024 

ReLU 4 x 4 x 1024 

TransConv (Stride=2) 8 x 8 x 512 

ReLU 8 x 8 x 512 

TransConv (Stride=2) 16 x 16 x 256 

ReLU 16 x 16 x 256 

TransConv (Stride=2) 32 x 32 x 128 

ReLU 32 x 32 x 128 

TransConv (Stride=2) 64 x 64 x 64 

ReLU 64 x 64 x 64 

TransConv (Stride=2) 128 x 128 

Tanh 128 x 128 

  

Doubling the tensor width and height in each 

layer was achieved using Conv2DTranspose layers 

with stride=2. ReLU (Rectified Linear Unit) is a type 

of activation function that introduces non-linearity to 

the model. It outputs the input directly if it is 

positive; otherwise, it outputs zero. Tanh, short for 

hyperbolic tangent, is another type of activation 

function commonly used in neural networks. Similar 

to the sigmoid function, tanh squashes its input to be 

in the range of (−1,1). 

The role of the discriminator is to determine 

whether an image is genuine or generated. 

Essentially, it tackles a supervised image recognition 

problem. The structure of the discriminator is listed 

in Table 2. 

  
Table 2. GAN discriminator architecture 

Operation Output shape 

Input x or G(z) 128 x 128 x 1 

Conv2D (Stride=2) 64 x 64 x 64 

LeakyReLU (α=0.2) 64 x 64 x 64 

Conv2D (Stride=2) 32 x 32 x 128 

LeakyReLU (α=0.2) 32 x 32 x 128 

Conv2D (Stride=2) 16 x 16 x 256 

LeakyReLU (α=0.2) 16 x 16 x 256 

Conv2D (Stride=2) 8 x 8 x 512 

LeakyReLU (α=0.2) 8 x 8 x 512 

Conv2D (Stride=2) 4 x 4 x 1024 

LeakyReLU (α=0.2) 4 x 4 x 1024 

Reshape 16384 x 1 

Dense (Fully connected) 1 x 1 

  

The input of the discriminator is a 128x128 

image. Then there are 5 convolutional layers 

sequentially. Finally, the last convolutional layer is 

flattened into a vector. In the convolutional layers, a 

stride of 2 was employed to diminish the size of the 

tensor as it traverses the network. The utilization of 

the sigmoid activation function in the final layer 

ensures that the output signal is normalized to a 

range between 0 and 1. This will predict the 

probability that the image is authentic. 

 

3. RESULTS AND DISCUSSION 

 

The training set consisted of 2960 samples. The 

generator and the discriminator were trained 

simultaneously. The learning rate for both the 

generator and discriminator was established at 

0.0002. Additionally, a gradient decay factor of 0.5 

and a squared gradient decay factor of 0.999 were 

applied to both networks. 

The Fig.6 shows the loss function of the 

generator and the discriminator (Eq.1). 
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Fig. 6. Changes in the generator and 

discriminator loss functions while training the 

GAN 

  

After about 6000 iterations, the discriminator and 

the generator find equilibrium, the loss function of 

the generator increases and the loss function of the 

discriminator decreases. The generator assimilates 

pertinent information from the discriminator, leading 

to an enhancement in the quality of the generated 

images. The comparison for the generated and 

original STFT after 100 epochs is shown in Fig.7. 

 

Fig. 7. Generated (a-d) versus original (e-h) 

STFT 

  

The generated images are intended to be similar, 

but not identical. A slight checkerboard pattern is 

noticeable in the generated images (Fig.7 a-d), which 

is the result of the use of the Conv2DTranspose 

layer. For comparison, the Upsampling+Conv2D 

method can be tested in future works.  

One prevalent issue during GAN training is mode 

collapse, where the generator identifies a limited set 

of samples that deceive the discriminator. 

Consequently, the generator struggles to produce 

diverse outputs beyond this restricted set. If the 

discriminator becomes too effective at 

distinguishing real from generated samples, the 

generator may decide to adopt a strategy of only 

producing samples that are more difficult for the 

discriminator to identify. 

Solving the mode collapse problem is an ongoing 

challenge in GAN training. Scientists and 

practitioners use various techniques to alleviate this 

problem. One is to explore alternative loss functions 

that may help in capturing a broader range of modes 

in the data. Another approach is introducing 

mechanisms to explicitly encourage the generator to 

explore different modes in the data distribution, such 

as adding diversity-promoting terms to the loss 

function. 

Next, the generated STFTs should be verified. 

Statistical measures, mean and root mean squared 

values were calculated for the original and generated 

STFT according to the formulas 

Mean value 

 �̅� =
1

128

1

128
∑ ∑ 𝑥𝑖𝑗

128
𝑗=1

128
𝑖=1  (2) 

Rms value 

 𝑋 = √
1

128

1

128
∑ ∑ 𝑥𝑖𝑗

2128
𝑗=1

128
𝑖=1  (3) 

where x is a value in 128 x 128 array, i and j are the 

row and column numbers respectively. 

Mean and RMS values for original and 30 

generated arrays were compared and visualised in 

boxplot Fig.8. 

 

Fig. 8. Comparison of statistical measures 

calculated for original and 30 generated STFT 

  

The graph shows that the generated matrices 

(images) are characterized by a small spread of the 

average and RMS values compared to the original 

ones. Their median is below the 25th percentile 

compared to the original ones. 

  
4. CONCLUSIONS AND FUTURE WORK 

  
The paper suggests the utilization of a Generative 

Adversarial Network (GAN) model as a tool to 

generate synthetic measurement observations, 

valuable for machine vibration diagnostics. An 

example of generating representative time-

frequency spectra of the vibration signal recorded on 

the combustion engine block is presented. The 

generated spectra are similar, but not identical, to the 

training set samples. Verification of image mapping 

using mean and rms values showed that the 

generated signals were within the acceptable range, 

although not within the 25-75 percentile range. 

When training the network, you may encounter 

difficulties related to the collapse of the GAN mode, 

which require, for example, the definition of a 

modified loss function. Further work on the use of 

the GAN network in vibrodiagnostics will focus on 
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modifying this network in order to obtain even better 

results. 

Deep generative models contribute to scientific 

progress. Using the example of the tested drive 

system, it was confirmed that they can provide 

examples of new situations and forecast input data 

without the need to conduct long and expensive tests. 
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